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Modern Portfolio Theory

m Central idea is Mean-Variance-Optimization:
m Estimate expected returns and (co-)variances of assets
m Maximize return per unit of risk (i.e. the Sharpe-ratio)
m Optimized weights lead to poor out-of-sample performance:

m Optimization is very sensitive to input parameters
m Higher weights for assets with
= high expected return and low (co-)variance
(Michaud, 1989; DeMiguel et al., 2009)
= larger estimation errors (“estimation error maximiser’, Michaud, 1989)
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Handling Parameter Uncertainty in Portfolio Management

m Different techniques have been developed:

m Portfolio constraints (Frost and Savarino, 1988; MacKinlay and Pastor, 2000)

m Bayesian-extensions (Jorion, 1985)

m Shrinkage (Ledoit and Wolf, 2003; 2004; Barroso and Saxena, 2021)

m Robust portfolio optimization (Garlappi et al., 2007; Kan and Zhou, 2007)
m None of these consistently outperforms the 1/N portfolio (DeMiguel et al., 2009)
m Reasons:

m Historical forecasts would require huge amounts of data which are usually not
available (DeMiguel et al., 2009)

m But: Even forecasts with modest predictive power (i.e. R5os of 0.5%) improve
performance (Allen et al., 2019)
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Motivation

Two lessons:

Superior OOS performance of 1/N-portfolio suggest dropping all
asset-specific information

Superior OOS performance of optimal portfolio using forecasts with modest
predictive power

= Reducing informational content of input parameters improves performance
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Motivation

Two lessons:

Superior OOS performance of 1/N-portfolio suggest dropping all
asset-specific information

Superior OOS performance of optimal portfolio using forecasts with modest
predictive power

= Reducing informational content of input parameters improves performance
Question:

m Is there an ideal level of informational content to address the tradeoff
between flawed parameter estimates and not using any information at all?
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N L ul| Rescarch Setting
Motivation

Two lessons:

Superior OOS performance of 1/N-portfolio suggest dropping all
asset-specific information

Superior OOS performance of optimal portfolio using forecasts with modest
predictive power
= Reducing informational content of input parameters improves performance
Intuition:
m Reducing information (cardinal — ordinal — nominal) in accordance with the

data should reduce estimation errors and thereby improve portfolio
performance
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Data

m As test assets we use 49 Fama-French industries. We take 100 random draws
of 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 and 30 industries. (Potential
extension to 5,...,100 assets drawn from the S&P 500).

m Aggregate Short Interest (SIl) taken from Rapach et al. (2016)
m Time frame: January 1995 to December 2019
m Various techniques to come up with expected returns:

m Historical mean returns over various horizons

m CAPM-based forecasts using different predictor variables (e.g.: short interest,
variance risk premia, financial uncertainty)

m Machine-learning based predictions

m Forecasts based on simple predictive regressions using aforementioned variables
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From Expected Returns to Ranks and Back

m We create our views through ordinal views on the expected asset returns:
Full ranking: g1 < po < -+- < s
Three sub-groups: p1 = p2 < pz < pa = s
Two sub-groups: p1 = p2 = pz < pa = us
One sub-group: p1 = p2 = p3 = pa = s
m We implement our views through CEEEZELY:

m We follow Meucci (2010) given historical scenarios (observations) with prior

distribution p := (4,..., ) we let p be defined by
p ;= argmin &£ (p\p) (1)
peEY -

where all ps > 0 and Z;FHH ps = 1 for all joint historical observations.
m Posterior distribution will weigh selected historic observations so that all
scenarios that do not fulfill the ranking get a smaller weight.
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Methodology

Mean-Variance Framework

m We then use the moments of the posterior distribution as inputs for
mean-variance optimization:
a1
f1y,2
wy = “\/Ai_ii where (2)
fyxy 1

t
iy, = Z psrs,. and (3)

s=t—H+1
t
iV = Z Ps (rs,t - ﬁs,t) (rs,t - ﬂs,t) (4)

s=t—H+1

m Portfolio constraints:
m Weights of assets have to lie between -1 and 1
m Sum of weights has to lie between 0 and 10
m For robustness: long-only constraint

m Benchmarks: 1/N portfolio and plug-in portfolio (based on exact forecasts)
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Performance
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Figure: Monthly Sharpe ratios of rank-based and group-based mean-variance portfolios, plug-in
mean-variance portfolios and 1/N portfolios. Portfolios are based on randomly drawn industries
and CAPM forecasts.
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Out-Performance vs No. of Assets

Differences in Sharpe Ratios vs. Number of Industries
Benchmark is 1/N Portfolio. CAPM Forecasts are based on Sll_d060. Covariance is FC
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Figure: Benchmark regressions: This figure presents the slope coefficients of plotting Sharpe
ratio differences vis-a-vis two bechmark portfolios against the number of assets (100 random
draws from FF49 industries, CAPM forecasts).
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Out-Performance vs No. of Assets

Differences in Sharpe Ratios vs. Number of Industries
Benchmark is Plugin—Portfolio. CAPM Forecasts are based on SlI_d060. Covariance is FC
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Figure: Benchmark regressions: This figure presents the slope coefficients of plotting Sharpe
ratio differences vis-a-vis two bechmark portfolios against the number of assets (100 random
draws from FF49 industries, CAPM forecasts).
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Possible performance drivers

What are possible performance drivers?

m Are portfolios weights “shrunk” towards equal weights? (cf. Ledoit and Wolf,
2003; 2004; Barroso and Saxena, 2021)7

m Are the estimates based on group-(rank-)based entropy pooling simply better
forecasters of future stock returns?
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Weight Statistics

Mean absolute deviation against 1/N weights

Based on Draws from 49 Industries. CAPM Forecasts are based on SlI_d060. Covariance is FC
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Figure: Mean absolute deviation of optimized industry-sampled portfolio weights relative to
equal weights. The number of groups is one and portfolios are based on randomly drawn
industries and CAPM forecasts.
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Weight Statistics

Mean maximum weight

Based on Draws from 49 Industries. CAPM Forecasts are based on SlIl_d060. Covariance is FC
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Figure: Mean maximum weight of optimized industry-sampled portfolio weights. The number of
groups is one and portfolios are based on randomly drawn industries and CAPM forecasts.
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R s of Strategy Inputs Across All Cross-Sections

Out-of-Sample R2 for Original Forecasts and Meucci Forecasts Across Industries
Time-frame: 1995-2019. Predictor Variable is SlI_d060.
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Figure: Aggregate R%os of expected returns used for mean-variance optimization. Benchmark is
60-months rolling average
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Cumulative Squared Forecast Error Differences for
Cross-Section of 30

Cumulated Squared Forecast Errors Differences for Original Forecasts and Meucci Foreca:
Time—-frame: 1995-2019. Predictor Variable is SII_d060. Number of Inudstries is 30
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Figure: UCLIImLé!?.AtTive squared forecast error differences between different forecasts and benchmark
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N Ll Forecast Statistics
Realized Standard Deviation of Long-Short
Minimum-Variance Portfolios

Standard Deviation of short Min—Var Optimized Portfolios and Benchmarks
Based on Draws from 49 Industries. CAPM Forecasts are based on Sll_d060. Covariance is FC
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Robustness

Results are qualitatively similar for...
m Various predictor variables such as:

m Variance risk premium

m Financial uncertainty and differences in financial uncertainty
m Rolling 60-months and 120-months average

m Machine-learning based forecasts

m Optimized long-only portfolios
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Conclusion

Conclusions

m Group-(rank-)based mean-variance optimization increases risk-adjusted
performance of optimized portfolios relative to plug-in and 1/N portfolio

m Weights of group-(rank-)based portfolios do not indicate stronger tilt towards
1/N-portfolio then plug-in approach

m Performance gains most likely due to higher accuracy of input parameters
(i.e. Group- (rank)based expected returns have positive R3¢ and covariance
estimate results in less realized standard deviation)
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Closing Words

Thank you very much for your attention!
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.C-EEU Pl  Parameter Uncertainty

Practical Issues With Mean-Variance Optimization

Based on Draws from 49 Industries. CAPM Forecasts are based on HA60. Covariance is FC
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Figure: Monthly expected returns based on 60-month rolling averages and realized returns,
optimized portfolio weights and squared forecast errors. Portfolios are based on 100 random
draws of 30 assets from 49 FF-industries.

UNIVERSITAT » MPT
- LIECHTENSTEIN -

Less is More 21/ 25



.C-EEU Pl  Parameter Uncertainty

Practical Issues With Mean-Variance Optimization

Based on Draws from 49 Industries. CAPM Forecasts are based on HA60. Covariance is FC
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Figure: Monthly expected returns based on 60-month rolling averages and realized returns,
optimized portfolio weights and squared forecast errors. Portfolios are based on 100 random
draws of 30 assets from 49 FF-industries.
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.C-EEU Pl  Parameter Uncertainty

Practical Issues With Mean-Variance Optimization

Based on Draws from 49 Industries. CAPM Forecasts are based on HA60. Covariance is FC
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Figure: Monthly expected returns based on 60-month rolling averages and realized returns,
optimized portfolio weights and squared forecast errors. Portfolios are based on 100 random
draws of 30 assets from 49 FF-industries.
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.C-EEU Pl  Parameter Uncertainty

Practical Issues With Mean-Variance Optimization

Based on Draws from 49 Industries. CAPM Forecasts are based on HA60. Covariance is FC
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Figure: Monthly expected returns based on 60-month rolling averages and realized returns,
optimized portfolio weights and squared forecast errors. Portfolios are based on 100 random
draws of 30 assets from 49 FF-industries.
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.C-EEU Pl  Parameter Uncertainty

Practical Issues With Mean-Variance Optimization
Based on Draws from 49 Industries. CAPM Forecasts are based on HA60. Covariance is FC
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Figure: Monthly expected returns based on 60-month rolling averages and realized returns,
optimized portfolio weights and squared forecast errors. Portfolios are based on 100 random
draws of 30 assets from 49 FF-industries.
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CAPM-Forecasts

m Industry return predictions based on Hasler and Martineau (2020):

IE(”M,t+1) = él,t + 62,1& - Sl
Fi,t = ]Et(fi,t+1) = Bi,t 'Et(rM,t+1) = /éi,t : (61,1: + 62,1' : Sllt)

m where:

m &1 and & based on 60 months rolling window
m [3;: based on 24 months rolling window
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Entropy-Pooling

m Transform group-(rank-)based views taken from forecasts into mean-variance
optimization inputs using entropy-pooling of Meucci (2010):
m Assume that returns follow a prior distribution f and a set of views V
m Posterior distribution  is the one that has the smallest relative entropy w.r.t. f

f= ar%énvin & (f|f) (5)

f
where £ (f|f) := [ f(x)In %dx
m For a non-parametric calculation approach we follow Meucci (2010), slightly
abusing notation, and, given historical scenarios (observations) with prior

distribution p := (&,..., %) we let p be defined by
p := argmin & (p\p) (6)
peEV -
where all p; > 0 and Z;:t—H+1 ps = 1 for all joint historical observations.
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Entropy-Pooling

m Assuming, our view is on the ranking of the fi:

s < < phiz < iz <

The posterior distribution will weigh selected historic observations so that all

scenarios that do not fulfill the ranking get a smaller weight and the new

(weighted) empir

distribution in terms of relative entropy/Kullback-Leiber-Divergence.

m We then use the

ical distribution is as close as possible to the prior

moments of the posterior distribution as inputs for

mean-variance optimization:

UNIVERSITAT
» entropy-pPooling EIN

~ i_
Wy = MVA% where
~ z 1/
Ky 2y,
t
I:"V - F_’srs, and
s=t—H+1
¢ ’
ZV - lss (rs,t - i‘\'/sg) (rs,t - /Ils,t)
s=t—H+1
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Performance

Sharpe Ratios of long Mean—-Var Optimized Portfolios and Benchmarks
Based on Draws from 49 Industries. CAPM Forecasts are based on Sll_d060. Covariance is FC
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Figure: Monthly Sharpe ratios of rank-based and group-based mean-variance portfolios, plug-in
mean-variance portfolios and 1/N portfolios. Portfolios are based on randomly drawn industries

and CAPM forecasts.
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