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Introduction Portfolio Management

Modern Portfolio Theory

Central idea is Mean-Variance-Optimization:
Estimate expected returns and (co-)variances of assets
Maximize return per unit of risk (i.e. the Sharpe-ratio)

Optimized weights lead to poor out-of-sample performance:
Optimization is very sensitive to input parameters
Higher weights for assets with
⇒ high expected return and low (co-)variance
(Michaud, 1989; DeMiguel et al., 2009)
⇒ larger estimation errors (“estimation error maximiser”, Michaud, 1989)

Illustration
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Introduction Handling Parameter Uncertainty

Handling Parameter Uncertainty in Portfolio Management

Different techniques have been developed:
Portfolio constraints (Frost and Savarino, 1988; MacKinlay and Pástor, 2000)
Bayesian-extensions (Jorion, 1985)
Shrinkage (Ledoit and Wolf, 2003; 2004; Barroso and Saxena, 2021)
Robust portfolio optimization (Garlappi et al., 2007; Kan and Zhou, 2007)

None of these consistently outperforms the 1/N portfolio (DeMiguel et al., 2009)

Reasons:
Historical forecasts would require huge amounts of data which are usually not
available (DeMiguel et al., 2009)
But: Even forecasts with modest predictive power (i.e. R2

OOS of 0.5%) improve
performance (Allen et al., 2019)
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Motivation Research Setting

Motivation
Two lessons:
1 Superior OOS performance of 1/N-portfolio suggest dropping all

asset-specific information
2 Superior OOS performance of optimal portfolio using forecasts with modest

predictive power
3 ⇒ Reducing informational content of input parameters improves performance
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Motivation Research Setting

Motivation
Two lessons:
1 Superior OOS performance of 1/N-portfolio suggest dropping all

asset-specific information
2 Superior OOS performance of optimal portfolio using forecasts with modest

predictive power
3 ⇒ Reducing informational content of input parameters improves performance
Question:

Is there an ideal level of informational content to address the tradeoff
between flawed parameter estimates and not using any information at all?
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Motivation Research Setting

Motivation
Two lessons:
1 Superior OOS performance of 1/N-portfolio suggest dropping all

asset-specific information
2 Superior OOS performance of optimal portfolio using forecasts with modest

predictive power
3 ⇒ Reducing informational content of input parameters improves performance
Intuition:

Reducing information (cardinal → ordinal → nominal) in accordance with the
data should reduce estimation errors and thereby improve portfolio
performance
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Methodology

Data

As test assets we use 49 Fama-French industries. We take 100 random draws
of 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 and 30 industries. (Potential
extension to 5, . . . , 100 assets drawn from the S&P 500).
Aggregate Short Interest (SII) taken from Rapach et al. (2016)
Time frame: January 1995 to December 2019
Various techniques to come up with expected returns:

Historical mean returns over various horizons
CAPM-based forecasts using different predictor variables (e.g.: short interest,
variance risk premia, financial uncertainty) CAPM-Forecasts

Machine-learning based predictions
Forecasts based on simple predictive regressions using aforementioned variables
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Methodology

From Expected Returns to Ranks and Back

We create our views through ordinal views on the expected asset returns:
1 Full ranking: µ1 < µ2 < · · · < µ5

2 Three sub-groups: µ1 = µ2 < µ3 < µ4 = µ5

3 Two sub-groups: µ1 = µ2 = µ3 < µ4 = µ5

4 One sub-group: µ1 = µ2 = µ3 = µ4 = µ5

We implement our views through Entropy-Pooling :
We follow Meucci (2010) given historical scenarios (observations) with prior
distribution p :=

( 1
H
, . . . , 1

H

)
we let p̄ be defined by

p̄ := argmin
p∈V

E
(
p|p

¯

)
(1)

where all p̄s ≥ 0 and
∑t

s=t−H+1 p̄s = 1 for all joint historical observations.
Posterior distribution will weigh selected historic observations so that all
scenarios that do not fulfill the ranking get a smaller weight.
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Methodology

Mean-Variance Framework

We then use the moments of the posterior distribution as inputs for
mean-variance optimization:

wV =
µ̂V Σ̂

−1
V

µ̂V Σ̂
−1
V 1′

, where (2)

µ̂V =
t∑

s=t−H+1

p̄s rs,· and (3)

Σ̂V =
t∑

s=t−H+1

p̄s
(
rs,t − µ̂s,t

) (
rs,t − µ̂s,t

)′
(4)

Portfolio constraints:
Weights of assets have to lie between -1 and 1
Sum of weights has to lie between 0 and 10
For robustness: long-only constraint

Benchmarks: 1/N portfolio and plug-in portfolio (based on exact forecasts)
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Results Performance

Performance
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Figure: Monthly Sharpe ratios of rank-based and group-based mean-variance portfolios, plug-in
mean-variance portfolios and 1/N portfolios. Portfolios are based on randomly drawn industries
and CAPM forecasts.

Long-Only Less is More 8/ 25



Results Performance

Out-Performance vs No. of Assets

−0.02

0.00

0.02

0.04

10 20 30
Number of Industries

D
iff

er
en

ce
s 

in
 S

ha
rp

e 
R

at
io

s

Strategy

Group−based−One

Group−based−Optimal

Rank−based

Benchmark is 1/N Portfolio. CAPM Forecasts are based on SII_d060. Covariance is FC
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Figure: Benchmark regressions: This figure presents the slope coefficients of plotting Sharpe
ratio differences vis-a-vis two bechmark portfolios against the number of assets (100 random
draws from FF49 industries, CAPM forecasts).
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Results Performance

Out-Performance vs No. of Assets
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Figure: Benchmark regressions: This figure presents the slope coefficients of plotting Sharpe
ratio differences vis-a-vis two bechmark portfolios against the number of assets (100 random
draws from FF49 industries, CAPM forecasts).
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Results Possible performance drivers

Possible performance drivers

What are possible performance drivers?
Are portfolios weights “shrunk” towards equal weights? (cf. Ledoit and Wolf,
2003; 2004; Barroso and Saxena, 2021)?
Are the estimates based on group-(rank-)based entropy pooling simply better
forecasters of future stock returns?

Less is More 10/ 25



Results Weight Statistics

Weight Statistics
Mean absolute deviation against 1/N weights
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Mean Absolute Deviation of short Mean−Var Optimized Portfolios vs. 1/N−Weights

Figure: Mean absolute deviation of optimized industry-sampled portfolio weights relative to
equal weights. The number of groups is one and portfolios are based on randomly drawn
industries and CAPM forecasts.
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Results Weight Statistics

Weight Statistics
Mean maximum weight
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Mean Maximum Weight of short Mean−Var Optimized Portfolios and Benchmarks

Figure: Mean maximum weight of optimized industry-sampled portfolio weights. The number of
groups is one and portfolios are based on randomly drawn industries and CAPM forecasts.
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Results Forecast Statistics

R2
OOS of Strategy Inputs Across All Cross-Sections
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Figure: Aggregate R2
OOS of expected returns used for mean-variance optimization. Benchmark is

60-months rolling average
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Results Forecast Statistics

Cumulative Squared Forecast Error Differences for
Cross-Section of 30
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Figure: Cumulative squared forecast error differences between different forecasts and benchmark
forecasts (60-month rolling average). Less is More 14/ 25



Results Forecast Statistics

Realized Standard Deviation of Long-Short
Minimum-Variance Portfolios
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Standard Deviation of short Min−Var Optimized Portfolios and Benchmarks

Figure: Realized standard deviation of long-short minimum-variance portfolios.
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Robustness

Robustness

Results are qualitatively similar for...
Various predictor variables such as:

Variance risk premium
Financial uncertainty and differences in financial uncertainty
Rolling 60-months and 120-months average
Machine-learning based forecasts

Optimized long-only portfolios
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Conclusion

Conclusions

Group-(rank-)based mean-variance optimization increases risk-adjusted
performance of optimized portfolios relative to plug-in and 1/N portfolio
Weights of group-(rank-)based portfolios do not indicate stronger tilt towards
1/N-portfolio then plug-in approach
Performance gains most likely due to higher accuracy of input parameters
(i.e. Group- (rank)based expected returns have positive R2

OOS and covariance
estimate results in less realized standard deviation)
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Closing Words

Thank you very much for your attention!
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Appendix Parameter Uncertainty

Practical Issues With Mean-Variance Optimization
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Figure: Monthly expected returns based on 60-month rolling averages and realized returns,
optimized portfolio weights and squared forecast errors. Portfolios are based on 100 random
draws of 30 assets from 49 FF-industries.
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Appendix Parameter Uncertainty

Practical Issues With Mean-Variance Optimization
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Appendix Parameter Uncertainty

Practical Issues With Mean-Variance Optimization
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Figure: Monthly expected returns based on 60-month rolling averages and realized returns,
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Appendix Parameter Uncertainty

Practical Issues With Mean-Variance Optimization
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Figure: Monthly expected returns based on 60-month rolling averages and realized returns,
optimized portfolio weights and squared forecast errors. Portfolios are based on 100 random
draws of 30 assets from 49 FF-industries.
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Appendix Forecasts

CAPM-Forecasts

Industry return predictions based on Hasler and Martineau (2020):

E(rM,t+1) = ĉ1,t + ĉ2,t · SIIt
r̂i,t ≡ Et(ri,t+1) = β̂i,t · Et(rM,t+1) = β̂i,t · (ĉ1,t + ĉ2,t · SIIt)

where:
ĉ1,t and ĉ2,t based on 60 months rolling window
β̂i,t based on 24 months rolling window

Back to Data
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Appendix Entropy-Pooling

Entropy-Pooling

Transform group-(rank-)based views taken from forecasts into mean-variance
optimization inputs using entropy-pooling of Meucci (2010):

Assume that returns follow a prior distribution f and a set of views V
Posterior distribution f̄ is the one that has the smallest relative entropy w.r.t. f

f̄ := argmin
f∈V

E
(
f |f

¯

)
(5)

where E (f |f) :=
∫
f (x) ln f (x)

f(x)
dx

For a non-parametric calculation approach we follow Meucci (2010), slightly
abusing notation, and, given historical scenarios (observations) with prior
distribution p :=

( 1
H
, . . . , 1

H

)
we let p̄ be defined by

p̄ := argmin
p∈V

E
(
p|p

¯

)
(6)

where all p̄s ≥ 0 and
∑t

s=t−H+1 p̄s = 1 for all joint historical observations.

Less is More 23/ 25



Appendix Entropy-Pooling

Entropy-Pooling

Assuming, our view is on the ranking of the µ̂:

· · · < µi1 < µi2 < µi3 < · · ·
The posterior distribution will weigh selected historic observations so that all
scenarios that do not fulfill the ranking get a smaller weight and the new
(weighted) empirical distribution is as close as possible to the prior
distribution in terms of relative entropy/Kullback-Leiber-Divergence.
We then use the moments of the posterior distribution as inputs for
mean-variance optimization:

wV =
µ̂V Σ̂

−1
V

µ̂V Σ̂
−1
V 1′

, where (7)

µ̂V =
t∑

s=t−H+1

p̄s rs,· and (8)

Σ̂V =
t∑

s=t−H+1

p̄s
(
rs,t − µ̂s,t

) (
rs,t − µ̂s,t

)′
(9)
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Appendix Long-Only

Performance
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Based on Draws from 49 Industries. CAPM Forecasts are based on SII_d060. Covariance is FC

Sharpe Ratios of long Mean−Var Optimized Portfolios and Benchmarks

Figure: Monthly Sharpe ratios of rank-based and group-based mean-variance portfolios, plug-in
mean-variance portfolios and 1/N portfolios. Portfolios are based on randomly drawn industries
and CAPM forecasts.
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