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Introduction

Discrete events such as elections or macroeconomic announcements create
risks in the prices of financial instruments
Firm-specific event risk can be diversified, but systemic risk cannot and will
be priced by the market
Index returns on such days are higher on average than on normal days
One goal of this paper: Quantify event risk premium in an expected utility
framework
In our model, non-convex volatility smiles occur in the run-up to events
Second goal of this paper: Price options on this event risk and analyze
conditions under which non-convex volatility smiles arise and their relation to
bimodality of RNDs
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Literature: Event risk premium

Part of the literature on event risk assumes (or studies cases where) there is
no risk premium (Froot and Posner, 2002; Hanke, Stöckl, and Weissensteiner,
2020)
Macroeconomic announcement premium (see the review of Ai, Bansal, and
Guo, 2023): positive average excess returns and higher volatility on event
days, i.e. when news on interest rates, inflation, unemployment, or other key
economic indicators are published (Savor and Wilson, 2013a,b; Lucca and
Moench, 2015; Wachter and Zhu, 2022).
Liu and Shaliastovich (2023) document positive average excess returns of
50bp on the day after U.S. elections
Can also be extracted ex ante from the differences in the prices of options
expiring shortly before/after the event (Liu, Tang, and Zhou, 2022; Knox
et al., 2024)
Among the papers from this strand of literature, our model is most closely
related to Liu, Tang, and Zhou (2022)
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Literature: Non-convex volatility smiles

Dubinsky et al. (2019) analyze event risk effects in option prices in a model
with stochastic, mean-reverting diffusive volatility together with both
event-induced jumps and jumps that may occur randomly at any time
between economic events
Alexiou et al. (2023) extend Dubinsky et al. (2019) and replace the normality
assumption for the deterministically-timed jumps by a mixture of two
normals, which may exhibit bimodality. Major findings: concavity in volatility
smiles signals event risk, and in around 80% of all cases of concave volatility
smiles, they also observe bimodal risk-neutral densities
Glasserman and Pirjol (2023) derive bounds on the number of crossings of
the implied volatility function with a fixed level. They find that in general,
there is no simple relation between the number of modes of the risk-neutral
density and the shape of the implied volatility smile
Among the papers from this strand of literature, our model is most closely
related to Alexiou et al. (2023)
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Basic setting
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Figure: Basic setting: Outcome-dependent payoffs, their prices, and the resulting returns under the
assumptions of risk neutrality (left panel) and risk aversion (right panel). Quantities that relate solely to
the case of risk neutrality are indicated by a tilde. Expectations are taken with respect to the real-world
probability measure P unless explicitly stated otherwise.
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Basic setting with conditional return densities
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Figure: Basic setting with conditional return densities under the assumptions of risk neutrality (left panel)
and risk aversion (right panel). Quantities that relate solely to the case of risk neutrality are indicated by
a tilde. Expectations are taken with respect to the real-world probability measure P unless explicitly stated
otherwise.
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Risk premia in an expected utility framework

Assumptions: risk-averse representative investor who decides based on
expected utility in returns, U(·) = E[u(·)], with a generic von
Neumann-Morgenstern utility function, u(r) that is increasing and concave
Four different cases which are given by the combination of
deterministic/stochastic conditional event returns (viewed at time τ−) with
deterministic/stochastic event outcome probabilities (when moving to time
points t < τ)
At time τ−, in equilibrium the expected return π satisfies

pτ−u(r̃Lπ) + (1 − pτ−)u(r̃Rπ) = u(1), r̃L ≥ 1 ≥ r̃R (1)

for deterministic event outcomes, and for conditional densities we get

pτ−

∫ ∞

0
u(r̃Lπ)fLN (r̃ ; m̃L, s̃L)dr̃+(1−pτ−)

∫ ∞

0
u(r̃Rπ)fLN (r̃ ; m̃R , s̃R)dr̃ = u(1),

(2)
where the parameters m̃L, m̃R , s̃L, and s̃R ensure that µ̃L ≥ 1 ≥ µ̃R and
E[r̃ ] = 1
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Risk premia in an expected utility framework /2

At time t < τ , for known event outcome probabilities pτ− ,
S̃t = exp(−r(τ− − t))S̃τ−
When the probabilities are allowed to change over time, since we assume the
terminal payoffs (or their distributions) to be fixed, only the time t
expectation of pτ− , Et [pτ− ], is relevant
From financial theory, we know that risk-neutral event outcome probabilities
qt themselves must be martingales under Q: EQ

t [qτ− ] = qt .
The Radon-Nikodym derivative, dP/dQ, is given by the ratios of the
corresponding event outcome probabilities
⇒ the process followed by pt must be a martingale under P:

EQ
t [qτ− ] = qt ⇐⇒ Et [pτ− ] = pt
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Risk premia in an expected utility framework /3

At time t < τ , the representative investor forms expectations about the
prospective values of the event outcome probabilities at time τ .
Final payoffs are fixed. Together with the martingale property of the process
for pt , this implies that equation (1) in the case of deterministic event returns
becomes

ptu(r̃Lπt) + (1 − pt)u(r̃Rπt) = u(1), (3)

By the same arguments, we can extend equation (2) to the case of stochastic
event outcome probabilities:

pt

∫ ∞

0
u(r̃Lπt)fLN (r̃ ; m̃L, s̃L)dr̃+(1−pt)

∫ ∞

0
u(r̃Rπt)fLN (r̃ ; m̃R , s̃R)dr̃ = u(1)

(4)
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Examples for resulting formulas

Quadratic utility,
u(r) = −0.5(α− r)2 (5)

with r < α, t = τ−, deterministic event outcomes:

π =
α−

√
(α− 1)2 + σ̃2(1 − 2α)

σ̃2 + 1
(6)

Power utility,

u(r) =
rγ − 1

γ
, (7)

t < τ−, conditional return densities:

πt =
(
ptEt

[
r̃ γ
L

]
+ (1 − pt)Et

[
r̃ γ
R

])−1/γ
(8)

with

Et

[
r̃γL

]
= exp

(
γm̃L +

1
2γ

2s̃2
L

)
(9)
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Option pricing in the world without a risk premium

We start with the basic setting with conditional event return densities
In a risk-neutral world, the option price at time τ− is given by the
mixture-of-lognormals model (see Ritchey (1990)), where each of the two
components can be valued via a modification of the Black (1976) model
Differences to the Black model:

Parameters do not scale with time to maturity
Non-zero location parameters of conditional densities

For the time t price of a call on S̃τ with strike K , we get

Ct(F̃t ,K , m̃L, s̃L, m̃R , s̃R) = q̃tMBC (F̃t ,K , m̃L, s̃L)+(1−q̃t)MBC (F̃t ,K , m̃R , s̃R),
(10)

where the modified Black call price, MBC (·), for generic m̃ and s̃, is given by

MBCt(F̃t ,K , m̃, s̃) = exp(−r(τ − t))[N(d+)F̃t − N(d−)K ], (11)

d+ =
(
ln(F̃t/K ) + m̃ + s̃2/2

)
/s̃, (12)

d− = d+ − s̃. (13)
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Option pricing in the world with a risk premium

In the risk-averse world with underlying St , all risk neutral event returns r̃ are
multiplied by the risk premium π

This corresponds to adding lnπ to the log returns in the Black model
Further, the risk-neutral event outcome probabilities change from q̃ to q in
the presence of a risk premium with EQ

t [r ] = 1
For the call price, this yields

Ct(·, πt) = qtMBC(Ft ,K , m̃L, s̃L, πt) + (1 − qt)MBC(Ft ,K , m̃R , s̃R , πt), (14)

where the modified Black call price, MBC(·), for generic m̃ and s̃, is given by

MBCt(Ft ,K , m̃, s̃, πt) = exp(−r(τ − t))[N(d+)Ft − N(d−)K ], (15)

d+ =
(
ln(Ft/K) + m̃ + s̃2/2 + lnπt

)
/s̃, (16)

d− = d+ − s̃, (17)

πt is calculated from equation (8), and qt is defined by EQ
t [r̃π] = 1.
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Empirical implications

1 Risk premia: For plausible values of relative risk aversion and other
parameters, the risk premia resulting from the model are in the range
documented in the empirical literature

2 Non-convexity of smiles: Simulations indicate that in our model, concavity of
volatility smiles implies bimodality of RNDs (proof currently being worked
on). Concave volatility smiles become more likely as

event outcome probabilities are closer to 0.5,
the distance between expected event returns increases,
the variances of conditional return distributions decrease, and
the time to maturity decreases.
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Conclusion

Simple model for event risk premia in an expected utility framework
Combined with the well-known mixture-of-lognormals model, closed-form
solutions for risk premia and option prices can be derived
Application of the model to parameters of event return distributions
estimated in previous work leads to magnitudes for event risk premia that are
in line with the empirical literature
The model features concave volatility smiles
Bimodality of risk-neutral return distributions seems to be a necessary, but
not a sufficient condition for concave volatility smiles
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