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Introduction

Motivation

Many problems in finance involve multivariate random variables ⇒ Similarity
of realizations?

⇒ Suitable (based on statistical theory) measure for detection: the
Mahalanobis distance (MD)

Examples: outlier detection, portfolio surveillance, asset classification
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Introduction

Introduction

Application based on MD: Financial Turbulence [Kritzmann & Li, 2010]

Multivariate unusualness in financial market data

FTt = (rt − µ)
′

Σ−1 (rt − µ) . (1)

⇒ Based on squared MD

rt , µ and Σ may each be determined or estimated in various different ways.

⇒ Depending on inputs, the resulting Mahalanobis distance will have a
different economic interpretation.

Aim of the paper:

Explore promising combinations (Input).
Discuss previous and potential uses and usefulness for financial market
participants (Output).
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Properties of the Mahalanobis distance

Initial Motivation for MD

Analyze and classify human skulls into groups, based on different properties
[Mahalanobis, 1927]

Properties for group classification in a financial context:
Returns on assets in a portfolio
Portfolio properties for an investment company
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Properties of the Mahalanobis distance

Use of MD suggested by Kritzmann & Li (2010)

MD as indicator for unusualness in financial markets (Financial Turbulence)
Return of one asset in relation to it’s historical mean and standard deviation:
(rt − µ)2/σ2

⇒ (Squared) Mahalanobis Distance for one asset

Multivariate extension in a portfolio context

Eu2
t =

n∑
i=1

w2
i

w2

(rt,i − µi )
2

σ2
i

(2)

⇒ Weighted, squared and normalized Euclidean Distance
Including information on the direction of moves

Ma2
t =

1

w2
(rt − µ)

′
wDΣ−1wD (rt − µ) (3)

⇒ Weighted, squared and normalized Mahalanobis Distance (Portfolio
Turbulence)
⇒ Additionally treats joint deviations of portfolio returns ri and rj given by
their correlation ρij
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Properties of the Mahalanobis distance

(Statistical) Properties of the MD

(Squared) MD has a χ2(n)-distribution (given rt ∼ Nn(µ,Σ))

(Weighted & squared) MD has a generalized χ2-distribution with parameters
Σ and wDΣ−1wD and Expectation w2 = tr(w2

D) =
∑n

i=1 w
2
i

Normalization leads to an Expaction of 1

MD is invariant under affine transformation Y = a + BẊ [Meucci, 2009]

MD captures all statistical information for elliptical distributions (fully
described by location parameter µ and scatter matrix Σ)
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Types of Financial Applications Sampe-based Differences

Sample-based input paramters
To detect major changes in markets

Distinguish two types of sample based differences:

Compare a realization to a historical sample or

Compare two samples
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Types of Financial Applications Sampe-based Differences

Sample-based input paramters
Compare a realization to a historical sample

Financial and Portfolio turbulence: relates today’s returns to historical means
(µ = x̄) and sample covariances (Σ = S).

⇒ Standardized indicator of unusual behavior across markets and portfolios.

Useful for market/portfolio surveillance [Bodnar, 2009].
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Types of Financial Applications Sampe-based Differences

Sample-based input paramters
Compare two samples

Compare two samples of different time periods by relating their means and
covariance matrices against each other [McLachlan, 1999]
⇒ Hotelling T 2-test for multivariate dependent samples, based on (squared)
MD [Rao, 2009].

Use both methods to determine periods of (non-) turbulence.

Use turbulent market parameters for stress testing portfolios [Chow, 1999].

Use non-turbulent market parameters (removing outliers) for robust portfolio
estimation [Campbell, 1998].
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Types of Financial Applications Sampe-based Differences

Sample-based input paramters
Example 1: Change in market conditions during the financial crisis

Portfolio equities (3/8), fixed income (2/8), real estate (2/8) and alternative
investments (1/8)

Historical sample calibration period: 2004-2006

mean std.dev skewness kurtosis

Equities 0.0006 0.0058 -0.23 1.02
Fixed income 0.0001 0.0035 0.00 1.01
Real estate 0.0010 0.0067 -0.49 1.40

Alt. investments 0.0003 0.0146 0.13 0.43

Table 1: Descriptive statistics - Time frame: 01/2004-12/2006. Indices to proxy for these asset classes: Equities: FTSE ALL WORLD, Fixed

income: Barclays Multiverse All, Real estate: FTSE EPRA/NAREIT Global, Alt. investments (proxied using commodities): S&P GSCI Commodities
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Types of Financial Applications Sampe-based Differences

Sample-based input paramters
Example 1 cont.: Change in market conditions during the financial crisis

As of 01/2007 observe the MD for an indication of changed market conditions
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Figure 1: Portfolio Turbulence: MD of realized returns from historical returns (sample period 01/2004-12/2006) and 0.05/0.95 confidence bands (green)

22



Types of Financial Applications Deviations from Model Prices

Deviations from Model Prices

Use the MD to find deviations of observed from implied returns of
theoretical/empirical models such as the CAPM or the Fama-French 3-factor
model

Use. . .

. . . to asses how much markets are in line with models

. . . as indication for bubbles in markets

. . . to assess which competing model best describes the markets
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Types of Financial Applications Deviations from Model Prices

Deviations from Model Prices
Example 2: Asset returns implied by the Black-Litterman Model [Black & Litterman, 1992]

Use monthly returns and market capitalization of 22 country indices from
1988-2012 [Kaiser et al., 2013]
Calculate implied returns E (rt+1) = δΣtw [Walter, 2011], assuming δ = 1,
weights wt and covariance matrix Σt (120-month rolling window)
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Figure 2: Mahalanobis distances of realized vs. Black/Litterman-implied values
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Types of Financial Applications Forecast Evaluation

Forecast Evaluation

Use of the MD to evaluate multivariate forecasts

For a multivariate point forecast µt , its MSE-Error matrix Σ determines a
MD-based confidence ellipsoid ⇒ to evaluate the forecast quality regarding
the observation rt

The MSE-matrix determines the shape of the confidence ellipsoid (defined by
the MD) with center µt .
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Types of Financial Applications Forecast Evaluation

Forecast Evaluation
Two possibles uses of the MD

Possible uses of the MD

1 To calculate forecast confidence regions for a (univariate) forecast path -
important for many (path-dependent) financial applications [Jorda &
Marcellino, 2010] (Wald Statistic based on MD)

2 Evaluate multivariate point-forecast using confidence ellipsoids [Lütkepohl,
2006] (in contrast to “Bonferroni”-confidence rectangles)
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Types of Financial Applications Forecast Evaluation

Forecast Evaluation
Example 3: Estimating a VAR-model for exchange rates

VAR-model based on log-differences of the USD/GBP spot rate
dst = ∆log(st), and the resp. forward premium pt = ft − st (01/1980 –
07/2013)

Estimation yields the following VAR(1,1)-proccess:(
dst
pt

)
=

(
−0.0029
−0.0002

)
+

(
0.0671 −0.8373
0.0004 0.9025

)(
dst−1

pt−1

)
+

(
u1t

u2t

)
(4)

with Σu =

(
0.000888 −0.000008
−0.000008 0.000002

)
.

MSE-matrices Σy (1) = Σu and

Σy (2) = Σy (1) + Φ1Σy (1)Φ
′

1 =

(
0.00089 −0.00006
−0.00006 0.00064

)
[Lütkepohl, 2006]
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Types of Financial Applications Forecast Evaluation

Forecast Evaluation
Example 3 cont.: Estimating a VAR-model for exchange rates

Table 2: VAR forecasts vs. realized values

Forecasts dst+h pt+h dst(h) pt(h)

06/2013 -0.0262 -0.0003 -0.0009 -0.0005
07/2013 0.0004 -0.0003 -0.0025 -0.0006

MSE Σy (h) 2013M06 2013M07

0.000888 -0.000008 0.00089 -0.00006
-0.000008 0.000002 -0.00006 0.00064

This table reports forecasts (for 06/2013 and 07/2013) for the log return of the USD/GBP spot rate (ds) and

the forward premium (p), using the VAR process stated above. In addition, it shows the realized values for

these variables together with the corresponding MSE matrices.
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Types of Financial Applications Forecast Evaluation

Forecast Evaluation
Example 3 cont.: Estimating a VAR-model for exchange rates
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Figure 3: Forecast confidence ellipses based on the Mahalanobis distance
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Conclusion

Conclusion

For multivariate (financial) problems

MD naturally supports answering questions regarding existence and magnitude of
deviations

between observations

between observations and theoretically (model-) implied values

between observations and predictions

implying different economic interpretations.
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Conclusion

The end

Thank you . . .

. . . very much for your attention!
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Conclusion

Literature I
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